Science University Research Symposium (SURS)

Publication Date

2025

College

College of Sciences & Mathematics

Department

Math and Computer Science, Department of

SURS Faculty Advisor

Jordan Brown

Presentation Type

Oral Presentation

Abstract

Patients with aortic valve stenosis often have calcified valve leaflets that impede blood flow. Transcatheter aortic valve replacement (TAVR) offers patients a minimally invasive option to replace their aortic valve by guiding a catheter through their blood vessels to deploy a bioprosthetic valve. We developed a 0-D model of the left heart to investigate TAVR performance in a patient-specific context. To achieve this, we constructed a lumped-parameter representation of cardiovascular dynamics, incorporating flows, pressures, resistances, and compliances of the heart chambers and valves. These physiological elements were represented through a system of differential equations, which we solved numerically using Backward Euler. We simulated flow and pressure dynamics upstream and downstream of the aortic valve to better capture post-TAVR behavior. By tuning the model to post-TAVR clinical data found in the literature, we demonstrated its ability to capture patient-specific hemodynamics. This tuning allows for more accurate simulation of post-TAVR cardiac dynamics, providing cardiologists with a tool to optimize patient outcomes.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.