Belmont University Research Symposium (BURS)


Integration of Mao-B Inhibitor Rasagiline into Computational Model of Levodopa for the Treatment of Parkinson's Disease

Publication Date



Sciences and Mathematics, College of


Chemistry and Physics, Department of

BURS Faculty Advisor

Dr. Davon Ferrara

Presentation Type

Oral Presentation


Parkinson’s Disease (PD) is the second most common neurodegenerative disorder in the world after Alzheimer’s. The hallmark symptoms of PD are tremor and rigidity, which are caused by the death of dopaminergic neurons in the brain, specifically within the substantia nigra of the basal ganglia. These symptoms are often treated by Levodopa (L-DOPA), MAO-B inhibitors, and other pharmaceuticals with the goal of increasing the dopamine concentration in the brain. To better understand how L-DOPA impacts the dopamine dynamics in the brain, various computational models have been developed. One model, by Véronneau-Veilleux et. al (Chaos 30, 093146, 2020), integrates L-DOPA pharmacokinetics, dopamine dynamics, and a neurocomputational model of the basal ganglia to predict the impact of L-DOPA regimens on a patient's motor function. In this study, we extended the model to investigate an adjunct therapy of L-DOPA with the MAO-B inhibitor Rasagiline utilizing an enzyme inhibition model, which showed a 1.67% increase of dopamine concentration in the brain when compared to L-DOPA therapy alone. Our model provides a foundation for optimizing treatment strategies using both L-DOPA and an adjunct.

This document is currently not available here.